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We derive a linearized system of dynamical thermoelasticity equations for an iso- 
tropic medium with thermal memory. We prove a uniqueness theorem and reciprocity 
theorem for the corresponding boundary-value problem. 

Under conditions of intense heating at low temperatures, experiments show that thermal 
excitations propagate with a finite velocity in the form of waves: the so-called second 
sound [1-4]. Analysis of thermally stressed states under these conditions is usually done 
in the framework of generalized thermomechanics [5], based on the hyperbolic heat-conduc- 
tion equation. Recently a nonlinear theory of thermoviscoelasticity including thermal 
memory has appeared [6], where by memory we mean that the entire past history of the thermal 
quantities affects the present state of the material. This theory is based on thermodynamics 
and gives a natural description from the physical point of view of the thermoelastic state 
in cases where the propagation of second sound is possible. In [6] it was assumed that the 
behavior of the material at each point is characterized by four response functionals: ~, 

^ 

~ij n and qi' The present value of the free energy ~ = @(Xi, t), the stress ~i" = ~i'( X', t) 
' 3 3 I ' 

the entropy n = ~(X i, t), and the heat flux qi = qi(Xi, t) are determined in terms of these 
functionals and the thermal history of the material point up to the present time: 

(x,  t) = ~(A0;  ~,, (x,  t) = ~',(A'); n (x,  t) = ~] (A'); q~ (x,  t) = ~ (A'), 
(i) 

where we use the notation 

A t - - ( e U ,  T, T t, gl). ( 2 )  

The history and total history of a function f up to the present time t are denoted by ft and 
~t, respectively: 

= f ( t - s ) ;  p(s)  = i f ( ~ )  d~. /(s) (3) 
0 

From the nonlinear functional equations (i) one can find the propagation velocities and 
damping factors of thermoelastic waves. But the magnitude of the discontinuity on the wave 
front and the temperature and stress distributions cannot be obtained in this way~ An 
analysis of a thermostressed state with thermal memory can be carried out by linearizing (I). 

Let the temperature of the body be T~ in the undeformed and unstressed state. We will 
consider the case of small deformations and changes in temperature: 

T - - T  o 
To ~ 1; ~j(t) = supt lu~'i (t)l ~ 1, (4)  

Then we assume that the pair of functions [T('), gi(')] is close to the temperature of the 
natural state To > 0 in the following sense: 

sup {IT (t) - -  To] + lg,  (t)]} < 8o, 
- ~ < t < t .  ( 5 )  

where ~o is a n  infinitesimal quantity. 

We introduce the concept of an equilibrium thermal history of the natural state 

0 c 0 c Ao ( U, To, Tos, i), (6) 

Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian SSR, Minsk. 
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol~ 47~ NOo 4, pp~ 670-675, October, 1984. 
Original article submitted June 21, 1983. 

~,-~,~- I ~ I J "~ ~ 1241 ~2-084118~1470'4-124~$08o50 �9 1985 P;_enu~ Publishing Corporation 



C C 
where Oij , 0 i are constant tensor and vector functions wxth the values Oij and Oi, respec- 
tively. -Expanding the response functionals in series about the equilibrium thermal history, 
we write: 

q~ (X~, t) = q~ (Ao) + m~j ~ (Ao) e u + Dr q~ (Ao) (T - -  To) + 6~t q~ (Ao) (~t _ Tos) q- 6~ q~ (Ao) gl + o (6o), (7) 

e (X~, t) = d(Ao) + O~j/(Ao) ~u + Dr e(Ao) (T - -  To) + 6yt e (Ao) (Tt--Tos) + 6~ e(Ao) g~ + o (6o), (8) 

~ (Xd) = $~ (Ao) + D ~  $~ (Ao) ez~ + D T ~i] (Ao) (T - -  To) + 6~t ~ j  (Ao) (T~ - -  Tos) + 6 ] ~  (Ao) (gl) + o (6o). (9) 

In (7)-(9) the symbol D denotes the partial derivative of the response functional with re- 
spect to temperature and the deformation; 6 is the partial derivative with respect to the 
temperature and temperature gradient history. 

An isotropic material has a center of symmetry and therefore one has the relations 

Dr $~ (Ao) ~ 0; 6~t St (Ao) = 0; 6~ e (A.) = 0; Oz,~ $~ (Ao) = 0; 

~ ~ (Co) = o. (lO) 
In equilibrium, the stress and heat flux vanish: 

$~(ao) = o, ~ (~o )  = o. ( n )  
Ignoring terms of order ~ in (7)-(9) and transforming the derivatives with the help of the 
Rice [7] representation, we find 

qi(X~, t ) = - -  ~ a(s) g~(t--s)ds, (12) 
0 

e(X~, t) = eo + c~ (Y--  To) + •  + ~ ~ (s) (T ~ - -  ToS ) ds, (13) 
0 

~(x~, O:  2• { ~ - - ~ ( r - - r o ) +  ; y(s)(T~--Tos)ds} 6~. (14) 
0 

Here ~(t), 8(t), and y(t) are the relaxation functions of the heat flux, internal energy, 
and thermal stress. The coefficients are given by 

• = D~I e(Ao); --• = Dr ~u (Ao); • (6m6i~ + 6u6~) + • = D~ u ~ (Ao); 

c~ = Oze(Ao); eo = e(Ao). (15) 

Finally, using the balance equation for the energy, in which we neglect the dissipative term 
as quadratic in sij, 

= --q~,~ + W, (16) 

and the equation of motion 

Pui = ~i j , i  + b~, (17) 

we obtain a system of linearized dynamical thermoelasticity equations for an isotropic medium 
with thermal memory in the form: 

co 

9"h~ + ~ ,~- - j '  ,~ (s) ~.~(t-- s) ds=• (~ + • ui.ii + bi, (18) 
0 

(19) 
c ~ + ~ ( o ) t r  j V ( s ) ~ ( t - - s ) d s + ~ l ~ h h =  ~(o)~. +J" ~'(s)~,.(t--s)ds+i~, 

0 0 

ch.~= 2• + [•215 + ~ y(s) ~ ( t - - s )  ds] 6f,, (20) 

where ~ = T -- To and 6ij is the Kronecker delta. 

We prove the uniqueness of the solution of (18)-(20). The initial conditions andbound- 
ary conditions have the form 

(t) = 6 (t) = u~ (t) = u, (t) = uiJ (t) ---- d u (t) = 0, - -  oo <2 t < 0, (21) 

~j(P, t) ni---pi(P, t); u~(P, t )=Ti(P,  t); PCS, (22) 

~ ( P ,  I ) = 0 ( P ,  t); P6S~; (23) 
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• [  oc(s)@,~(P, t --s)  Gds=O, PffS~, (24) 
0 

where S~ is the part of the surface over which the temperature is specified and $2 is the re- 
maining portion of the surface which is assumed to be perfectly thermally insulated. 

We assume that the following relations are satisfied: 

c~(O)~>O, ~3(0)>0, ? (0 )~0 ,  p, • • xs, xi, c~,~/~O. (25) 

Let two d'ffere t solutions of the ~roblem be riven ~v ,,~*) ~) ~(I) @(i) ( ~ . . . . .  1 ' ~-13 , ~ij ' , and ul :), 
~- ( , - )  ,~ ~ ,'~,(,~ ~ ( o )  - ( ~ )  _ <=Y ( ) - ( , ) -  ( )_  ~'o) - ( ~ ) - - ~ ( , )  _ ~ . , ~ . T..en u - u u ~ ~ - ~ ~ ~ , ~ -~ are also 
i '. i i i ' " i'. . i3 

solutlon~ of the problem ~or homogeneous boundary con~itzons. We apply the Laplace trans- 
form to (18), (19), (20) and the boundary conditions (22), (23), and (24), using the initial 
condition (21). With the use of (18), (20)and boundary conditions (22)-(24) we obtain the 
followi~g relation : 

o(o) dV O. (26) 
g 

Eliminating the last term in (26) with the help of the Laplace transform of the heat equation 
(19) and the identity 

S ~ ~(o) ~(q) ntis = O, ,,,~ (27) 
S 

we obtain the expression: 

i _ _  _.~(o) ZE(o)~ .Gn~{O)u(O)+2• + (o)~(o) +(• [p(c,,+~Y~(~176 ~ .u.,~ udV_--O. (28) 
, t v r  - ' [  i ~I Xz,, Shh  g'hh ZI p 
V 

We consider real values of the Laplace transform parameter p such that p > Po, where Po 
is the farthest simgularity of the solution from the origin on the right half of the real 
axis. From the operational relation 

and (25) it follows that 

lira p[ (p) = t (0) 
p~oo 

(29) 

p~(p)>O; p~(p)>O; p?(p)~O for p--->-oo. (30) 

Therefore, for large enough p, Eq. (28) consists of nonnegative terms and can only be satis- 
fied if 

~}0):0 ,  3 (~ = 0  for p>po .  (31) 

Thus, it fpllows that u~ ~ = 0 and O (~ = 0 [8]. This means that u~ I)- = u ~2), @(') = 
~(2), 

~) = ~) and the solution of the thermoplastic boundary-value problem f~r an isotropic 
l ~ . . 

medium wm~h thermal memory is unmque. 

Let a heat source w and body force b i act on an isotropic elastic body with thermal 
memory, and let the stress Pi and temperature e be given on its surface. We use the abbre- 
viation I {hi, Pi, w, e} for the sources; the corresponding responses (displacement and 
temperature) are abbreviated by the symbol C~---{ui, ~}. A second set of sources and re- 

' ' ' C' ~' sponses is denoted by I' ~-{b~, Pi, w , 8 } and --~-- {u i' }. Taking the Laplace transform 
of (18)-(20), we obtain the identities 

~J u~. i -- ~i u~, ! = (• -- ?) (~' %k -- ~ ~), ( 32) 

=(@,ii@ -- ,~,~) ~ l P ( * h k ~ ' - - g ~ ) - - (  ~ '  W'#). (33 )  

Integrating (32) and (33) with respect to volume and transforming with the help of the 
Ostrogradskii--Gauss theorem, the equation of motion, and the boundary conditions, after 
elimination of a common term we obtain the equation 

S V V 

(34) 

Applying the inverse Laplace transform and the convolution theorem to (34) we obtain the 

reciprocity theorem: 

1243 



t [ Ou;(X~, T) Ou~(Xi, T)] 

s o a~ a~ 

v a[o a.~ a~ ] 

dT -[- 

d~= 

V 0 V 0 0 

S 0 0 

t 

- -  - 0 

0 0 

(35) 

When the medium is infinite, the reciprocity theorem simplifies 

' au~ (x~, ~) au~(xi ,  ,~) 
v o 0z 0: 

t 

= . .  ~ a v  [ [~' (x , ,  t - ~) = (x , ,  ~) - ~ (x , ,  t -  ~) =' (x , ,  ~)1 d .  - -  
F 0 

v o o (36) 
If in (35) and (36) we take the relaxation function for the heat flux in the form of the 
Maxwell--Kat t aneo function 

and assume there is no relaxation of the stress or internal energy, and express the linear- 
ization coefficients in terms of the Lam~ coefficients 

~ l=~ , (3k+2~)To ;  z~=o%(3~,+2~); ~3=1~; ~,=~', 

then we obtain the well-known results of generalized thermomechanics [5]. 
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